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Abstract-Steady two-dimensional conjugate heat-transfer problems of free convection from a vertical flat 
plate have been analyzed mainly by the method of using local similarity solution of free convection boundary 
layer. The two thermal boundary conditions considered here are constant temperature and constant heat 
flux at the outside surface of the flat plate. The effects of axial conduction in the flat plate on the interfacial 
temperature are significant in the constant heat &IX case, and correlated by the dimensionless parameter I( D. 
Com~risons with the restilts of the finite difference method and related experiments indicated the 

appropriateness of the present analytical solutions. 
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NOMENCLATURE 

thermal diffusivity of a fluid ; 
unknown coefficients in equation 

(21); 
constants in equations (27) and (28); 
constant defined by equation (16); 
thickness of plate; 
dimensionless form of d, = Gd, = 

d/l; 
dimensionless interfacial tempera- 
ture defined by equation (10); 
acceleration due to gravity; 
constant defined by equations (11) 
and (12); 
Grashof number, 

modified Grashof number, 

=____=g84or; Q~q~x4 
vzk, v2kf 

local and average heat-transfer 
coefficients ; 
thermal conductivities of a solid and 
a fluid ; 
ratio of thermal conductivity, = 

k&r ; 
height of flat plate; 
dimensionless height, = Cl; 

local and average Nusselt number, 
= hxjk,, = hmx/kf ; 
Prandtl number; 
heat flux at outside surface and at 
interface; 
dimensionless heat flux, = 
W(k,A T), = WW 7’) ; 
temperature of a solid and a fluid; 
temperature at interface and tem- 
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x, x*, 

y, y*, 
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Subscripts 

0, 

; 
s, 
* , 

perature given in advance at outside 
surface ; 
velocity in x and y directions ; 
vertical distance from leading edge; 
dimensionless form of x, = Gx, = 

xll; 
distance normal to vertical surface of 
plate ; 
dimensionl~ forms of y, = Gy, = 

Y/f; 
horizontal distance; 
volume coefficient of thermal 
expansion ; 
temperature difference defined by 
equations (11) and (12); 
emittance of heated plate; 
dimensionless variables defined by 
equation (14); 
kinematic viscosity. 

value of uniform temperature and 
uniform heat flux given in advance; 
value at interface.; 
fluid ; 
solid ; 
d~ensionl~s length based on 1, ex- 
cept for Grx* and Grl*. 

1. INTRODUCTION 

XT IS well known that, when convective heat-transfer 
results are strongly dependent on the thermaI boun- 
dary condition, consideration of convective heat- 
transfer problems as conjugated problems is necessary 
to obtain physically more strict results. A good many 
research efforts, both experimental and theoretical, has 
been devoted to the conjugate problems of forced 
convection heat transfer. But a few publi~tions have 

1545 



1546 M. MIYAMOTO, J. SUMIKAWA, T. AKIYOSHI and T. NAKAMURA 

2 

adiabatic waZt t 

w?=r 
surface 

kf 

outside 
mrfaeef 

&interface 

FIG,. 1. A vertical flat plate and coordinate system 

been devoted to the conjugate problems of free 
convection. 

Gdalevich and Fertman [l] discussed the method, 
the specifics and the principal results in the previously 
obtained solutions of conjugate problems of free 
convection. They stated conclusively that the use of 
numerical methods for solving the initial system of 
governing partial differential equations, such as finite 
difference method, is evidently the most promising in 
studies of conjugate free convection. As Kelleher and 
Yang [Z] pointed out, the analytical treatments, used 
extensively in conjugate forced convection problems 
[3], are difficult due to matching a non-linear solution 
of free convection in a fluid with a linear conduction 
solution in a solid body at the solid-fluid interface. 

In the problems ofconjugate free convection about a 
tapered, downward projecting fin of a simple power 
law form, successful analytical solutions could be 
obtained by Lock and Gunn [4]. 

Generally, it seems diBicult to obtain more exact 
solutions ofconjugate free convection by the analytical 
treatment than by the numerical method such as finite 
difference method [SJ. 

Nevertheless, analytical solutions of conjugate free 
convection, if it can be obtained, may be useful to seize 
the main features of the conjugate problem and to find 
the dimensionless parameter which controls the char- 
acteristics of the conjugate free convection. Chida and 
Katto [6] performed studies of conjugate problems in 
this direction by the use of vectorial dimensional 
analysis. They applied their method to the interpre- 
tation of previously studied conjugate heat transfer 
problems. 

In this work, the vertical flat plate which has a height 
I, a thickness d and a constant conductivity k, is heated 
from the outside surface by an external source (a 
condensing vapor, electrical source, etc.), as is shown in 
Figure 1. Heat moves through it by twodime~ional 
conduction and is transferred from the solid-fluid 

interface by laminar free convection to a fluid. Over 
and under the heated flat plate, two semi-infinite flat 
plates with the same thickness and zero conductivity, 
are placed vertically without any gap. Two thermal 
boundary conditions prescribed at the outside surface 
will be considered here. These are the constant tem- 
perature case (here after this is called case 1) and the 
constant heat flux case (case 2), which are realized in 
many practical applications and experiments. 

It is the purpose of this paper to predict theoretically 
the temperature and the heat-transfer rate at the 
solid-fluid interface, which are determined by the 
common solution of energy equations for the fluid and 
the vertical flat plate. It is important to show the 
analytical method which can be applied to other 
various boundary conditions, and to elucidate quanti- 
tatively what dimensionless parameters play the most 
important role in each case of the conjugate problem. 

The local similarity solution to the boundary layer 
equations of free convection from a vertical surface 
with an arbitrary temperature distribution, and 
Fourier’s series solution to the steady two-dimensional 
heat conduction equation for the flat plate are mat- 
ched, interfacially, satisfying the continuity of tem- 
perature and heat flux. 

In order to show the appropriateness of the present 
analytical solution, numerical results of the interfacial 
temperature are compared with the numerical solution 
using the finite difference method and related 
experiments. 

2. BASIC EQUATIONS AND SOLUTIONS 

The physical model and coordinate system are 
shown in Fig. 1. Steady two-dimensional free con- 
vection from a vertical solid wall is given by the usual 
laminar boundary layer equations : 

2 u; + “d” = gP(T, - T,) f VQ 
ay ay (2) 

t3T, .T, a2T, 
udx+uF=aF. (3) 

Steady two-dimensional temperature fields for the 
flat plate are given by equation (4): 

d2T 8T, 
-G+2=O* ay 

Equation (3) and (4) are coupled by continuity con- 
ditions at the solid-fluid interface: 

O~xXl: 

?-,(x,0) = T,(x,O) = T,(x) (5) 
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and 

k aTS 
Say(XY - O)=k ~(.X,+O). 

z 8Y 
(6) 

Numerous combinations of the boundary conditions 
at the outer surface, upper surface and lower surface of 
the cross-section of the vertical flat plate are of some 
interest, but to illustrate the method of analysis, the 
following boundary conditions will be considered in 
addition to the fluid-solid interfacial condition : 

(i) - d 5 y S; 0: 

2 (0, v) = 2 (1, y) = 0 

(ii) 0 5 x 5 f : 

TS(X, - d) = T, = const 
(constant temperature at the outside surface, case 1) 

or 

~~~~~,-d)=4~ = const 

(constant heat flux at the outside surface, case 2) 

(iii) - 3c < x < a0 : 

T/(x, co) = T, = const 

(iv) OSx&I: 

U&O) = u(x, 0) = u(x, co) = u(x, co) = 0. (7) 

Hereafter, the following dimensionless variables are 
used : 

X = Gx, Y = Gy, L = Gl, D = Gd, 

X x*=X=- Y y d D 

1 L’ 
y*=i-/*=i=L (9) 

Where 

2.1. Local similarity solutionfor laminarfree convection 

Rao, Domoto and Elrod [7] have developed a 
technique for the solution of free convection problems 
on a vertical flat plate with arbitrary (though smooth) 
tem~rature. If the interfacial tem~rature T,(x) in 
equation (5) is assumed to be known, their technique 
can he applied to these problems. From the standpoint 
of local similarity, the first approximation solution of 
equations (I), (2) and (3) with boundary conditions (5), 
and (iii) and (iv) in equation (7) have been obtained 
and have given the dime~ionle~ heat flux at the 
interface_ The result given by Kao, Domoto and Elrod 

[73 for Pr = 0.70 can be closely approximated by the 
following equation : 

Q, = - CF”j2 g- t;4 [- 0.4995 - 0.271Oq]. (13) 

Where 

- 5dF ‘;dx* 
’ - F2dx* ’ 

t = s 0 

(14) 

and constant C is given by : 

case 1: C = $Gri’* U5) 

case 2: C = -!- GTI*~“~. 
J2 

(16) 

The approximation given by equation (f3) is very 
accurate for 0 $ 0 5 i/6. t] = 0 and r~ = l/6 
correspond to the constant interfacial temperature and 
the constant interfacial heat flux, respectively. 

2.2. Analytical solution for a flat plate 

The temperature dist~bution in the tIat plate can be 
obtained by solving equation (4) subject to boundary 
conditions (5) and (i), (ii) in equation (7). If T,(x) in 
equation (5) is assumed to be known, then the solution 
can be obtained by the classical methods discussed by 
Carslaw and Jaeger [S) to give the following dimen- 
sionless heat tIux at the interface: 

case 1: 

Q, = - g (F - 1) dx* - 2K 2 nn coth(nnd*) 
n=l 

x cos (nxx*) 
I 
’ (F - l)cos (nrcx*)dx* 07) 

0 

case 2 : 

Qw = KQ, - 2 K 2 nn tanh (nnd*) cos (nnx*) 
n-1 

X 

I 

1 

F cos (mx*) dx*. (18) 
0 

The leading terms of the right hand side of equations 
(17) and (189 contain K/d* and Kd*, respectively, by 
the following approximation : 

tanh x = x + 0(x3) (x < n/2)_ 

KQo in equation (18) is excepted. 
It can be seen that the domirrant dimensionless 

parameters are KL/D for case 1 and KD/L for case 2. 

2.3. Conjugare problem so&on 

By the continuity condition (6) for the heat flux at 
the interface, the right hand side of equation (13) can 
be equated to the right hand sides of equations (17) and 
(18). Then thenon-linearintegro-differentialequations 
(199 and (20) for each case are obtained and can be 
soIved to know the interfacial temperature: 



case 1: 

-!- Grl”4 F3’* r-“4 (0.4995 + 0.2710~) 
J2 

=i -$ 
s 

‘(6J)dx*-2K f nrccoth(nlrd*) 
0 n=l 

x cos(nnx*) 
r 

’ (F - l)cos(nnx*)&* (19) 
“0 

case 2: 

” ~,.1*3/‘6 F3/2 

42 

t- 1’4 (0.4995 + 0.2710 9) 

= KQo - 2 K 5 nrr tanh(~~~*) cos(mrx*) 
n=l 

X 

s 

1 

F cos(nnx*) dx*. (20) 
0 

These equations seem to be too difficult to solve 
exactly. So we tried to obtain approximate solutions 
by a procedure outlined as follows (further details can 
be found in [9] : 

In the first place, the unknown interfacial tempera- 
ture distribution F(x*) is expressed in a simple poly- 
nomial equation including the unknown coefficients : 

F(x*) = a0 + a,x* + uzx+2 + u3x*3 + u4x*4 (211 

Equation (21) is substituted for equations (19) and 
(20). Then the right hand sides of equations (19) and 
(20), that indicate convective terms, are expanded in 
the power series of x*. Both sides of the obtained 
equations are multiplied by cos (max*) and integrated 
by x* between 0 and 1 (m = 1, 2, 3, . . .). By the 
orthogonality of the cosine function, the systems for 
the nonlinear simultaneous equations of a, are ob- 
tained. These systems can be solved by the method of 
successive iteration, in which the nonlinear terms of a, 
are supposed to be constant and then, the consequent 
systems of linear simult~eous equations of a, can be 
solved easily. 

After about 10 iterative cycles, all cases converged 
within the 10e3% changes of unknown a,. 

Heat-transfer coefficient is evaluated by the follow- 
ing equations : 

qw = ww - T,,). (22) 

Then, the local Nusselt number is calculated by the 
following equations with resultant F. 

case 1: 

Nux 
- = + $0.4995 + 0.2710~) 
G?X”4 

case 2: 

(0.4995 + 0.2710 q) 

(23) 
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Average Nusselt number is calculated by the following 
equations : 

case 1: 

Nul 1 ’ 
Gr1','4 = 3 s c’- ‘j4 F3” (0.4995 + 0.2710~) dx* 

o 

(25) 
case 2: 

NUi 
-= 
Grx* 1:5 

G,.l* i/20 F-’ dx*. (24) 

3. FINITE-DIFFERENCE SOLUTIONS 

For the semi-infinite heated flat plate (I = MJ), finite- 
difference solutions have been obtained. The details of 
the solutions are given in [lo] and [ 1 l]. The outline of 
the procedures is as follows: 

Governing partial differential equations of unsteady 
free convection in the fluid and unsteady heat con- 
duction in the flat plate have been transformed into the 
explicit upwind finite-difference equations, including 
continuity conditions (5) and (6), and boundary con- 
ditions (7). Numerical calculations started just after a 
step change in temperature or heat flux at the outside 
surface. When the change of the dimensionless in- 
terfacial temperature after 100 time steps reached 
within O.Ol%, the numerical solution was considered 
to have reached its steady state. 

Particularly for case 2, a larger KD value necessi- 
tated a larger number of time steps. When KD is larger 
than 3000, the present finite-difference technique is not 
so efficient. Ziness [5] indicated the similar tendency 
with the exception of the effects of D. These difficulties 
may be removed by the introduction of the iterative 
cycles proposed by Gdalevich and Fertman [l]. But 
they did not indicate the numerical results. 

4. INTERFACIAL TEMPERATURE OF THE FLAT PLATE 
WITHOUT AXIAL HEAT CONDUCnON 

In order to examine the effects of axial heat con- 
duction in the flat plate on the interfacial temperature, 
the following simplified treatment of the conjugate 
problems will be compared. The previous solutions of 
the free convection heat transfer gave the local heat- 
transfer coefficients at the solid-fluid interface which 
are given by the following equations : 

(1) Constant interfacial temperature: 

Nux = A(Pr) G~x”~ (27) 

(2) Constant interfacial heat flux : 

Nux = B(Pr) . Grx*“’ (28) 

When Pr = 0.70, A(Pr) = 0.353 and B(Pr) = 0.483, 
from equation (13). 

(24) 

It is assumed that local heat-transfer coefficients at 
the solid-fluid interface of this conjugate problems, 
case 1 and case 2, are given by equations (27) and (28), 
respectively. Furthermore, it is assumed that the axial 
heat conduction in the flat plate can be neglected. 
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Table 1. Example of calculated values of a, 

Case 

K 
D 
Grl, Cd* 
a0 

ai 
a2 
a3 

a4 

1 1 2 2 

1000 500 2000 598 
100 50 50 150 
106 lo6 8.1 x 10’ lo6 

0.9803 0.9827 5.6619 0.9600 
0.0194 0.0097 0.0968 0.0158 

-0.0242 -0.0112 0.0283 -0.0182 
0.0198 0.0092 -0.0528 0.0150 
0.~78 - 0.0038 0.0009 0.0062 

Then, heat balance at each axial station of the 
heated flat plate gives the following dimensionless 
interfacial temperature : 

case 1: 

F= 
1 

1 + A(Pr) . (D/K) . P4 X--l’4 (29) 

case 2 : 

The right hand side of equation (29) includes the 
parameter (D/K), which is the dominant parameter in 
equation (17), too. The interfacial temperature given 
by equation (30) is the same one which is given by the 
solution of constant interfacial heat flux. 

5. NUMERICAL RESULTS 

Numerical results were obtained for Pr = 0.70 alone 
and variations k, and d. The present analytical method 
may be adapted to various Prandtl numbers with the 
corresponding local similarity solution of the boun- 
dary layer equations. 

Table 1 shows examples of the calculated values of 
a,. It seems that equation (21) is a rapidly convergent 
series. The order of the polynomial selected had no 
apparent effect on the solution for polynomials of third 
and fourth order polynomials. 

Figures 2 and 3 show the comparisons of the 

interfacial temperature distributions, between the pre- 
sent conjugate solutions and finite-difference so- 
lutions, for case 1 and case 2. It can be seen that the 
difference between both results are insignificant except 
for the region near the leading edge of case 2. Present 
analytical conjugate solutions give about 6% higher 
interfacial temperature than the finite-difference so- 
Iution at the leading edge, for case 2. Near the leading 
edge, a difbculty incapable of solution by the present 
treatment occurs. It is that the bounda~ layer approx- 
imations in equations (2) and (3) are not available 
near the leading edge. And it is improbable that there is 
a perfectly adiabatic flat plate under the heated plate. 
These problems will have to be investigated in the 
future. 

Now, Fig. 4 shows the dimensionless interfacial 
temperature in case 1 for Grl = 10’. In this figure, there 
are three groups of interfacial temperature corres- 
ponding to the three values of ILL/D: 1000, 500 and 
100. In each group, the interfacial temperatures have 
the common KL/D and the different K and D/L, as is 
shown in the figure. These results indicate that the 
controlled parameter of case 1 is KL/D, which appears 
also in the leading term of equation (17). 

If the small effects of the boundary condition at the 
upper surface of cross section of the heated plate on the 
interfacial temperature are neglected, dimensionless 
length L( = Gr11’3) in KL/D and X/L is insignificant; 
and the interfacial temperatures for Grl less than 10’ 
are given by the same interfacial temperature for Grl = 

10’ with the same K/D and the same X (= Grx1.‘3). 

The results of no axial conduction in the flat plate 
(equation (29)), indicated by the dotted chain lines in 
Fig. 4, give the interfacial temperature with little 
difference from the present conjugate solution. It can 
be seen that the effects of the axial conduction in the 
flat plate are insignificant in case 1. 

Figure 5 shows the dimensionless interfacial tem- 
perature in case 2 for Grl* = lOi (L = Grl*’ ‘4). It can 
be seen that with case 2 the controlled dimensionless 
parameter is KD by the equivalent considerations to 
case 1. But the simplified treatment of case 2 (equation 

1.0 

F= 
Tw_Tm 
To-T- 

i;- 50: 167 

-: Present theory (PrzO.7) -~- ! -.- 

0.5 ---: No axial conduction (29) ( Pr = 0.7 ) 

---7 
i 
/ 

------: Numerical solution 

K=28, To:Const. Grl=2.7x106 
A_. I / 3 

0.0 0.5 1.0 

FIG. 2. Comparisons of interfacial temperature distributions, between present conjugate solutions and finite- 
difference solutions (case 1). 
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Table 2. Materials of the heated flat plate 

Material Thickness 
Thermal 

conductivity Emittance 

sus 304 
Stainless steel 
Aluminum 
Glass 

5mm 16Wm-‘K-l 0.2 
5mm 204 W m-l K-’ 0.2 
6mm 0.76 W m-l K-’ 0.9 

(30)), considering no axial conduction, gives the dif- 
ferent interfacial temperature from the present con- 
jugate solution. Larger values of KD cause significant 
axial conduction effects on the interfacial temperature; 
and the interfacial temperatures become nearly uni- 
form for KD larger than 2.0 x 105. 

Figure 6 shows the effect of dimensionless parameter 
KD on average Nusselt number of case 2 for Grl* = 
10”. Average Nusselt numbers for the different K but 
the same KD are nearly equal, and larger values of KD 
give smaller Nusselt number being close to Nusselt 
number of the constant interfacial temperature. 

6. EXPERIMENT 

In order to compare the present analytical solutions 
with observation, experiments corresponding to case 
2, were conducted on three materials; stainless steel, 
aluminum and glass (Table 2). A brief recapitulation 
of the experiments is in order here, and details of them 
are given in [12]. Heating stainless foils, 0.0015 mm in 
thickness, both surfaces of which were electrically 
insulated with polyester films, 0.1 mm in thickness, 
were sandtiched by the same two plates of the tested 
materials, as shown in Fig. 7. These piled up plates 
were 600 mm in width, 400 mm in height and about 
11 mm in total thickness. The stainless foils of uniform 
thickness inserted between the tested plates were 
heated by putting an electric current through them and 
achieving the uniform surface flux condition. The 
heated flat plate was placed perpendicularly at the 
center in the veneer test chamber, which was 
1815 mm in height, 925 mm in width and 925 mm in 

length, as is shown in Fig. 8. A veneer plate, 10 mm in 
thickness, was placed vertically under the heated plate, 
about 1 mm away from the leading edge of the heated 
plate, to minimize the heat loss from the leading edge. 

In order to measure the surface temperature of the 
heated plate, thermocouples of copper constantan of 
0.1 mm dia., were bonded on the surface of the heated 
plate. These thermocouple junctions were placed 
along the vertical center line of the heated plate and the 
individual wires were led across the heated plate, as is 
shown in Fig. 7. The spanwise temperature distri- 
butions of the heated plate was measured by the use of 
copper constantan thermocouples of 0.1 mm dia., 
which were embedded in the heated plate and were 
placed along two horizontal lines at different distances 
from the leading edge. Temperature stratifications in 
the test chamber and the temperature at the inner 
surface of the test chamber were measured by the use of 
copper constantan thermocouples of 0.35 mm dia., as 
is shown in Fig. 8. Thermal e.m.f. of the thermocouples 
was measured by the use of a digital voltmeter with a 
resolution of 0.001 mV. 

Heat flux at the surface of the inserted stainless foils 
was determined by the previously measured resistance 
of the stainless foils and the measured current through 
the foils. In order to compare the experimental results 
of the surface temperature with the present conjugate 
solutions, the measured heat flux at the point, where 
the stainless foils were inserted, was corrected by 
thermal radiation and by a spanwise conduction heat 
loss in the heated plate. Heat flux qr of thermal 
radiation was evaluated by the following equation : 

0 : Grf = 1 0” 41 

I I I 
: Constant interfacial temp.fsimilar Solution) 

0.5 conduction (30) (Pr = 0.7) 
I 

1 o3 10” 
5 

10 -K.D 

FIG. 6. Effect of dimensionless parameter KD on average Nusselt number (case 2). 
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1. TESTED MATERIAL 2. POLYESTER FILM 

3. STAINLESS’FOIL 4. ELECTRODE 

5. THERMOCOUPLE LOCATION 6. LEAD WIRE 

J 

FIG. 7. Exploded view of the experimental heat transfer plate. 

qr = FU(T~ - Tz) (31) 

where u is the Stefan-Boltzmann constant, c is emit- 
tance from the surface of the heated plate, T, is the 

surface temperature of the heated plate and T, is the 

inner surface temperature of the test chamber. T, and 

T, are measured on the same horizon. The spanwise 
conduction heat loss in the heated plate was relatively 

small and can be roughly given by the following 

equation : 

q loss = 2 dk, 3 (32) 

Measured surface temperature T, were transformed 

into the dimensionless surface temperature F by using 

q. in equation (lo), which was determined by the 
following equation : 

k 925 

FIG. 8. Schematic diagram of the experimental apparatus: (1) 
veneer test chamber, (2) heated plate, (3) veneer plate, (4) acryl 
plate for visual flow, (5) thermocouples to measure tempera- 
ture of surrounding fluid, (6) thermocouples to measure 

temperature of veneer plate. 

qo = q - qr - qloss (33) 

where q was the measured heat flux at the point where 
the stainless foils were inserted. The physical proper- 

ties of air were evaluated by the following reference 
temperature: 

T, = T, - 0.38 (T, - T,) (34) 

Figure 9 shows the comparisons, concerning dimen- 

sionless surface temperature profiles, between experi- 

mental results obtained by aforementioned cor- 

rections and the present conjugate solutions. The 
present conjugate solution agreed well with the experi- 
ment for a larger value of KD. When KD/L was 7.5 

(KD = 2372), the difference between the present so- 
lution and the experiment was about 10% in the region 
near the leading edge, and might be introduced by both 
error in the experiment and error in present conjugate 

solution, as mentioned before. 

7. CONCLUSION 

The following can be concluded: Comparisons of 

present analytical solutions with finite-difference so- 
lutions and the experimental results indicate the prac- 

ticality of the present conjugate solutions. Straight- 
forward insight on this conjugate problem can 

be obtained by the use of the controlled dimensionless 

parameter K/D or KD. 
1. When the outside surface of the flat plate is 

maintained at a uniform higher temperature, the 
controlled dimensionless parameter is K/D and axial 

heat conduction in the flat plate insignificantly affects 

the temperature distribution. 
2. When the outside surface is heated at uniform heat 

flux, the controlled dimensionless parameter is KD 
and axial heat conduction in the flat plate has signi- 

ficant effects on the temperature distributions for 
larger KD. Larger values of .KD than lo5 give nearly 
uniform interfacial temperature. 
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EFFET DE LA CONDUCTION THERMIQUE AXIALE DANS UNE 
PAR01 VERTICALE SUR LA CONVECTION NATURELLE THERMIQUE 

RbnmP-On analyse des probldmes de transferts thermiques couples bidimensionnels et permanents, pour 
la convection naturelle sur une plaque verticale, par la methode de similarite locale de la couche limite. Les 
deux conditions aux limites thermiques considerees ici sont de temperature constante et de flux constant sur 

la face externe de la plaque. Les effets de la conduction axiale dans la plaque sur la temperature interfaciale 
sont significatifs dans le cas du flux constant et ils sont unifies par le parametre sans dimension KD. 

Des comparaisons avec les rbultats de la methode aux differences finies et avec les experiences montrent la 
validite des solutions analytiques presentees. 

EINFLtiSSE DER AXIALEN WARMELEITUNG IN EINER VERTIKALEN 
EBENEN PLATTE AUF DEN WARMEUBERGANG 

BE1 FREIER KONVEKTION 

Zusammenfassung - Das stationare zweidimensionale gekoppelte Warmeiibergangsproblem bei freier 
Konvektion an einer vertikalen ebenen Platte wurde nach der Methode der Verwendung lokaler 
Ahnlichkeitslosungen der freien Konvektions-Grenzschicht untersucht. Die zwei in dieser Arbeit 
betrachteten thermischen Randbedingungen sind konstante Temperatur und konstanter Warmestrom an 
der aul3eren Oberflache der ebenen Platte. Die Einfliisse der axialen Warmeleitung in der Platte auf die 
Grenzschichttemperatur sind fur den Fall konstanten Warmestroms bedeutend und wurden durch den 
dimensionslosen Parameter KD korreliert. Vergleiche mit den Ergebnissen nach der Methode der finiten 
Differenzen und entsprechenden Experimenten bestatigten die Brauchbarkeit der vorliegenden analytischen 

Losungen. 

BJHDIHME IlPOjIOJIbHOH TEl-lJIOfIPOBO~HOCTR BEPTMKAJIbHOH HJIOCKOH 
IIJIACTMHbI HA TEnnonEPEHoc rwki cB060~I~oZi K~HBEKHMM 

AHHOT~LOIII - kiCnOnb3yK MeTOLL OCHOBaHHbIn Ha JlOKaJlbHOM aaTOMO~enbHOM pemensa ana norpa- 
nnqnoro cnoa npn cB060nHOn KOHBeKUHH. npOaeneH aHann COnpameHHbtX 3anaK CTaUUOHapHOro 

DyxMepHOrO cB060AnOKOHBeKTWBHOrO TennonepeHOCa K BepTnKanbHofi nnocKoti nnacrnue npn atiyx 
TennoBbtX rpaHWiHbtX yCnOBnaX: nOCTORHHOn TeMnepaType w flOCTOsHH0ii nnOTHocTn TennoBoro 

noToKa Ha BHemHek nOBepXHOCTn nflOCKOii nJlaCTHHb1. npOnOnbHaa Ten,tOnpOBOnHOCTb nnocKofi 

nnacTnUbt OKa3btBaeT CytttecTeeHnoe mmmie Ha pacnpeneneHse TeMnepaTyp B cnoe npn nOCTOIlHHOM 

TennOBOM noToKe W y’lnTbtBaeTCs C nOMOmbI0 6e3pasMepHoro napaMeTpa KD. CnpaBe&“,,BocTb 

anannTnKecKnx pemeHnn npoBepeHa nyTeM CpaBHeHns c pe3ynbTaTaMn. nOnyYeHHbtMn McTofloM 

KOHe’(HbtX pa3HOCTek W C COOTBeTCTBytOmHMA 3KCnepHMeHTa,,bHblMn fia,,HbtMW. 


